
Abstract Unwanted formation of colour takes place dur-
ing the production of crystalline sugar. The degree of
colouration depends partly on the necessary processing
conditions, e.g. heating and pH, and partly on the initial
composition and condition of the sugar beets used as raw
material. Reducing sugars are formed during the process.
These are reactive compounds forming a variety of
coloured complexes and strong precursors to further for-
mation of colour and many of these compounds contain
fluorophores. In the present work it is discussed if spec-
trofluorometric screening of intermediary sugar products
prior to the final heating stages combined with a multi-
way chemometric approach can provide information that
significantly reflects the condition of the process and the
beets. The model used is the N-way PCA (Principal Com-
ponent Analysis) which is an exploratory model, not ne-
cessitating explicit modelling of single parameters nor
any assumptions towards parameter interaction. By use of
a 4-way PCA of order (3,2,3,3) satisfactory classification
of 47 thick juice samples belonging to 5 factories has been
obtained from a spectrofluorometric screening method.
Also, a temporal trend has been found to evolve during
the time of production. The investigation substantiates the
use of modern models from data analysis for extracting
significant information from large and complex data sets.

1 Sugar production

In northern Europe the most important source of sucrose
for the production of crystalline sugar is the sugar beet,
Beta Vulgaris. Harvesting of sugar beets and, immediately
following, production of sugar is concentrated to a yearly
period of approx. 4 months. This period is called the cam-
paign and runs typically from October to January. During
the campaign the factories continuously receive beets
from many different beet farmers. Due to premises of
growing, e.g. fall of rain, frost, soil characteristics, fertil-
izer type and harvesting machinery, there is a high varia-
tion between the truckloads delivered by the farmers. A
consequence of this variation is that the parameters for the
chemical unit processes are difficult to control with regard
to securing a white and uniform final product (see [1] for
an overview of the process). The quality class of the sugar
is determined according to European standards in which
colouration is a main parameter. The classification influ-
ences the price at which the product can be sold, hence
there is a strong economical motivation for minimizing
the formation of colour during the process. Chemometrics
has successfully been applied to the prediction of selected
quality parameters in sugar [2].

A spectrofluorometrically based screening method has
been applied to samples taken weekly of a preliminary
sugar product, thick juice. Data from this screening have
been explored with multi-way, multivariate chemometric
methods.

2 Experimental

Fluorescence intensity landscapes, or excitation-emission matri-
ces, have been measured on 47 thick juice samples from the 1994
campaign. Five factories have contributed thick juice samples.
Each sample has volumetrically been diluted 1:15 and 1:150 with
NH4Cl pH 9.00 buffer in doubly ion-exchanged and Si-free water.
The buffer was made only once. Both of the dilutions were mea-
sured using 20 excitation wavelengths (250 nm–440 nm, 10 nm in-
tervals) and 311 emission wavelengths (250 nm–560 nm, 1 nm inter-
vals). Two typical landscapes for one sample are shown in Fig.1.
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Note that the peaks in the ultraviolet do not decrease with dilu-
tion, this is caused by concentration quenching, or inner-absorp-
tion effect, see [3]. At the excitation and emission sides 10 nm slits
were used. The instrument was the Perkin Elmer LS50B spectro-
fluorometer. As indicated by Fig. 1, the combination of a narrow
emission slit width and generally low turbidity allows neglecting
the Rayleigh scattering. The 47 samples were measured in arbi-
trary order.

3 Analysis of N-way data arrays

Each intensity measurement in the collected data depends
on four external parameters; the sample number (47 sam-
ples), the concentration (two levels of dilution), the detec-
tion wavelength (311 emission wavelengths) and the exci-

tation wavelength (20 excitation wavelengths). Hence, the
intensities measured constitute a 4-way data array of order
(47,2,311,20).

Various models exist for analyzing three-way data sets,
see [4]. In the present work we focus on the N-way prin-
cipal component analysis (N-way PCA) which is a gener-
alization of the 3-way Tucker3 [5] model to N-way data
arrays. Taking a starting point in the 3-way case, Fig. 2
provides a basis for presenting the N-way PCA. The 3-
way PCA model of a 3-way data array X of order r1, r2, r3)
is depicted in the figure. The array is decomposed into a
significant systematic part and a non-significant residual
depicted by E. The systematic part is described by or-
thogonal factors which are stored columnwise in matrices
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Fig. 1 Two fluorescence land-
scapes – one for each dilution
– are measured per thick juice
sample



A (r1, w1), B (r2, w2) and C (r3, w3). The number of factors
in each of the three ways, i.e. w1, w2 and w3, must be de-
termined by the analyst from a priori knowledge about X
or by evaluating models with different combinations of
w1, w2 and w3, choosing the order that gives the most ac-
curate model of X. The array G of order (w1, w2, w3), re-
ferred to as the core array, allows the factors to interact in
the model of X. Interaction of factors is not encountered
in conventional, i.e. bilinear, PCA but is only feasible for
N ≥ 3. After having estimated the orthogonal factors and
the core array the squared entries in the core express how
significant the factor combinations are for the model. The
4-way PCA can be conceived as an extension of the de-
composition illustrated in Fig. 2 with a necessary intro-
duction of an additional set of factors, D, and by extend-
ing X (r1, r2, r3, r4), G (w1, w2, w3, w4) and E (r1, r2, r3, r4)
to be 4-way structures. The general N-way PCA may be
formulated according to (1).

vec X ≈ (A1 ⊗ · · · ⊗ AN) vec C (1)

In (1) X represents the N-way data array of order (n1, ··· ,
nN) and Ai (ni, wi) is the orthogonal component matrix be-
longing to the ith way. The array C of order (w1, ··· , wN)
designates the core array. ⊗ represents the Kronecker prod-
uct. For details of the general N-way model the reader is re-
ferred to [6]. A tutorial on N-way PCA is given in [7]. A
common algorithm calculating component matrices and
core array from the data array in (1), is described in [8].

Factors from N-way PCA suffer from rotational ambi-
guity, i.e. the N-way PCA of X has an infinity of factors
and cores, where one solution can be rotated into another
giving the exact same fit to X. Returning to the ex-
ploratory power of the squared elements of the core, one
can perform controlled transformations of a solution to
give a core where only a few squared entries are signifi-
cant, see [9]. Having only a limited number of significant
core entries allows the analyst to focus on a few combina-
tions of more significant and general factors. In contrast,
having no significant combinations of factors, interpreta-
tion is rendered impossible due to the high number of
non-significant factors that must be evaluated.

4 Principal component analysis 
of the 4-way data array

In order to find the optimal order of the 4-way PCA
model, several combinations of different orders were in-

vestigated. Table 1 shows the relative increase in ex-
plained sum-of-squares (SS) as the orders of the models
increase. The total number of parameters is shown in the
rightmost column of Table 1. The findings from this table
suggest that a model of order (3,2,3,3) should be chosen
since 96.25% of SS explained seems appropriate in com-
parison with the models of higher orders. Also, the num-
ber of parameters should be kept as low as possible in ac-
cordance with the principle of parsimony. Parsimonious
models involve as few parameters as possible, hence the
risk for fitting non-systematic trends (noise) in X is mini-
mized. Note, that the model does not improve in fit when
using more than two factors in the second dimension, this
is in concordance with the number of observations: One
cannot derive three or more orthogonal solutions in a di-
mension that is only spanned by two variables.

In order to improve the interpretability of the (54 ele-
ments large) core array, the solution was transformed to
yield maximum variance-of squares of the core as pro-
posed in [9]. By transformation the variance-of-squares of
the core array, which is an indicator of how few signifi-
cant entries are present in the core, changed from 4.11 ×
1020 to 5.46 × 1020, i.e. an increase of 32%. The resulting
profiles are plotted in Fig. 3A–D. Inspection of the vari-
ance-of-squares maximized core elements yields (with the
involved factors of the four modes in parentheses) 2.36 ×
1010 (1,1,1,1), 1.73 × 109 (1,1,2,2) 9.50 × 108 (1,2,1,3),
1.49 × 108 (1,2,2,3) and 1.03 × 108 (1,2,1,2). For conve-
nience of the reader the squared elements of the core have
been sorted, and the values of the 5 largest entries are de-
picted in Fig. 4. From this figure it is clear that the com-
bination indicated by (1,1,1,1), being the first sample pro-
file, first dilution factor and the first excitation and emis-
sion profiles, is most important in the model of X. There-
fore we shall initially concentrate on explaining these fac-
tors since they are most general. In Fig. 3A, profile 1
shows that the main variation between samples is caused
by two levels of the fluorescence intensities. In Fig. 3A
the samples are arranged factory-wise in ascending week
number such that samples 1–10 are from factory a, 11–18
from b, 19–28 from d, 29–36 from e and 37–47 from f.
Hence, we may conclude that the samples from the last
factory (number 37–47) generally have lower levels of in-
tensity. Similarly, the major trend in the data is that the
fluorescence intensities descend when the samples are di-
luted. This is deduced from Fig. 3B since the factor de-
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Fig. 2 The three-way principal component analysis (PCA) model

Table 1 Sum-of-squares explained by PCA models of different
orders

Model order Expl. SS [%] Num. Par.

(1,1,1,1) 74.13 384
(2,1,2,2) 82.88 772
(2,2,2,2) 92.08 782
(3,2,3,3) 96.25 1201
(3,3,3,3) 96.24 1230
(4,2,4,4) 97.85 1656



creases from 0.93 to 0.40 upon dilution. The reason that
this is not true for all samples, as indicated by factor two,
may be due to concentration quenching, i.e. that the inten-
sity does not decrease with dilution from 1:15 to 1:150.
The spectral excitation and emission profiles marked 1 in
Fig. 3C–D give indications to the profiles of the fluo-
rophores being common to the samples.

Bearing in mind that the samples are ordered factory-
wise after increasing week number, we return to the sam-
ple profiles in Fig. 3A. Sample profile number 2 appears
to reflect time-dependent events since the level generally
increases as the week of sampling increases. There is a
shift in this temporal development going from sample 28
to 29, corresponding to going from factory d to e. Also
sample profile number 3 appears to reflect intensities that
are inversely related to the week number, albeit, this trend
is not as obvious as in the case of profile 2. Additionally,
the profiles not only reflect time dependences but also
give rough indications of different levels for the factories.
We have chosen to extend Fig. 3A with a scoreplot where
sample profiles 2 and 3 are plotted against each other, as
shown in Fig. 5. This plot fully exploits the information
in the two profiles as discussed above by combining the
trends from two independent factors in one plot. The re-
lationship among the samples becomes clear since sam-
ples from the same factories are grouped almost without
overlaps. Furthermore, these two factors reveal a devel-
opment in time, that is, there is a trend in the plot that the
samples are dispersed within the clusters according to the
time of sampling (as indicated by the inserted arrow).
Hence, sample profiles 2 and 3 contain fluorometric in-
formation that describes the temporal behaviour of the
thick juices as the campaign runs. Also, plots of sample
profiles 1 vs. 2 and 3 have been investigated, but as indi-
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Fig. 3A–D The rotated factors
from PCA on the 4-way data
set. The sample profiles are
shown in A. Emission and ex-
citation profiles are shown in
C and D, respectively. The fac-
tors explaining the variation
caused by dilution are illus-
trated in B. 1–3 see text

Fig. 4 The 5 largest squared elements of the core array. The re-
maining 49 elements are in the same range, or lower, than the low-
est two elements shown here. Hence, the three most significant
factor combinations are (1,1,1,1), (1,1,2,2) and (1,2,1,3)



142

cated by sample profile 1 in Fig. 3A, this factor contains
only very general information that cannot reveal detailed
differences between neither time nor factory among the
samples.

5 Results

Explorative soft modelling, in casu 4-way PCA, has sub-
stantiated the use of spectrofluorometry as a screening
method. By showing that the collected 4-way data array
cannot only classify samples according to factories, but
also give an indication of temporal conditions, fluorome-
try gives promise as a very relevant source of information
that is related to variations in the raw beets and the state
of the factory as well. Without explicit modelling of the
many uncontrollable parameters (some being difficult to
asses or quantify, e.g. growing conditions and weather
conditions) causing the differences between samples, the
results from the 4-way PCA has proven that spectrofluo-
rometric measurements give promise as an important
screening method for process control. By temporal char-
acterizing of the thick juice, the process control will be
able to adjust conditions accordingly. On the basis of the
presented results a project has been initiated aiming at de-
veloping a spectrofluorometer for in-line screening. This

will improve our understanding of the relation between
measured fluorescence signals and the extent of coloura-
tion. The data analytical part of the project will include
extensive use of chemometric multi-way models, as the
one presented.
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Fig. 5 A scoreplot combining
the information in sample pro-
files no. 2 and 3. The letters a,
b, d, e and f each relate to a
factory and the numbers desig-
nate the week of sampling.
This plot reveals two important
trends in the fluorescence data:
Grouping according to factory
and a development in time


